Abstract

As classic shape memory polymers featuring shape reconfiguration of temporary state, covalent adaptable networks containing reversible bonds can enable permanent-state reconfigurability through topological rearrangement via dynamic bond exchange. Yet, such an attractive dual shape programmability is limited by the actuation mode of direct heat transfer and poor mechanical properties, restricting its control precision and functionality. Herein, we presented a method to create nanocomposites with photomodulated dual shape programmability and remarkable mechanical properties leading the fields of covalent adaptable networks. MXene, whose photothermal efficiency was revealed to be regulated by the etching method and delamination, was introduced into polyurethane networks. Upon adjusting the light intensity, the dual shape programmability of both permanent and temporary states could be accomplished, which exhibited potential in information recognition, photowriting paper, etc. Furthermore, owing to the dynamic transcarbamoylation at elevated temperatures, such a phototriggered dual shape programmability could be maintained after the self-healing and reprocessing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.