Abstract

A series of Bi(2)O(3)/BaTiO(3) composite photocatalysts with different mass ratios of Bi(2)O(3) vs BaTiO(3) were prepared by an impregnating-annealing method. X-ray diffraction (XRD), high-resolution transmission electron microscopic (HRTEM), and UV-vis diffuse reflection spectroscopy (DRS) confirmed that Bi(2)O(3) and BaTiO(3) coexisted in the composites. The results of surface photovoltage (SPV) experiments showed enhancements of photovoltaic response in composites, which indicated a higher separation efficiency of photoinduced charges due to the establishment of an efficient interfacial electric field between Bi(2)O(3) and BaTiO(3) in the composites. The consistency of phtocatalytic activity and photovoltaic response intensity of photocatalysts showed that the efficiency interfacial electric field between Bi(2)O(3) and BaTiO(3) played an important role in improving the degradation efficiency of Rhodamine B (RhB). The 60%-Bi(2)O(3)/BaTiO(3) sample with the best activity was found by optimizing the mass ratios of Bi(2)O(3) vs. BaTiO(3). On the basis of the work function (WF) measurements, a reasonable energy band diagram was proposed for BaTiO(3)/Bi(2)O(3) composite. It would be helpful in designing and constructing high efficiency heterogeneous semiconductor photocatalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call