Abstract
In the present study, a biomimetic reaction center model, that is, a molecular triad consisting of a chlorin dimer and an azafulleroid, is synthesized and its photophysical properties are studied in comparison with the corresponding molecular dyad, which consists only of a chlorin monomer and an azafulleroid. As evidenced by (1) H NMR, UV/Vis, and fluorescence spectroscopy, the chlorin dimer-azafulleroid folds in nonpolar media into a C2 -symmetric geometry through hydrogen bonding, resulting in appreciable electronic interactions between the chlorins, whereas in polar media the two chlorins diverge from contact. Femtosecond transient absorption spectroscopy studies reveal longer charge-separated states for the chlorin dimer-azafulleroid; ≈1.6 ns in toluene, compared with the lifetime of ≈0.9 ns for the corresponding chlorin monomer-azafulleroid in toluene. In polar media, for example, benzonitrile, similar charge-separated states are observed, but the lifetimes are inevitably shorter: 65 and 73 ps for the dimeric and monomeric chlorin-azafulleroids, respectively. Nanosecond transient absorption and singlet oxygen phosphorescence studies corroborate that in toluene, the charge-separated state decays indirectly via the triplet excited state to the ground state, whereas in benzonitrile, direct recombination to the ground state is observed. Complementary DFT studies suggest two energy-minima conformations, that is, a folded chlorin dimer-azafulleroid, which is present in nonpolar media, and another conformation in polar media, in which the two hydrophobic chlorins wrap the azafulleroid. Inspection of the frontier molecular orbitals shows that in the folded conformation, the HOMO on each chlorin is equivalent and is shared owing to partial π-π overlap, resulting in delocalization of the conjugated π electrons, whereas the wrapped conformation lacks this stabilization. As such, the longer charge-separated lifetime for the dimer is rationalized by both the electron donor-acceptor separation distance and the stabilization of the radical cation through delocalization. The chlorin folding seems to change the photophysical properties in a manner similar to that observed in the chlorophyll dimer in natural photosynthetic reaction centers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.