Abstract

Copper indium sulfide (CuInS2) nanocrystals (NCs) are nontoxic and cost-effective, making them attractive for use in highly efficient solar cells. However, direct observations of the photoinduced carrier dynamics of CuInS2 NCs to examine the relationship between carrier dynamics and structural parameters with the aim of optimizing NC properties for specific applications are limited. Here, we synthesized nearly stoichiometric oleylamine-protected CuInS2 NCs using two convenient one-pot methods to produce CuInS2 nanoparticles and nanodisks. Transient absorption measurements using femtosecond laser flash photolysis revealed that the use of oleylamine as a protecting ligand leads to the formation of vacancy-doped NCs. The rapid decay of the photogenerated excitons in the oleylamine-protected NCs was not sensitive to the crystal structure or shape of NCs, and could be explained by defect trapping and energy transfer to the hole-based localized surface plasmon resonance in the oleylamine-protected NCs. Our resu...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call