Abstract

The photoinduced addition of O2 onto the unsaturated cluster Pd3(dppm)3CO2+ (as a CF3CO2− salt) in acetonitrile is reported. The final product Pd3(dppm)3(O2)22+(v(O2) = 838 and 866 cm−1) is formed in a multi-step fashion in which two photochemical intermediates are observed (presumably Pd3(dppm)3(O2)(CO)2+ and Pd3(dppm)3(O2)2+. No X-ray structure could be obtained, but numerous spectroscopic findings demonstrate that O2 binds the Pd3 center as a peroxo-O2, and acts as a two-electron donor that triply bridges the metal atoms (forming a 44-electron cluster). The very small excited state lifetimes (between 25 and 35 ± 10 ps) obtained by picosecond flash photolysis indicate that the primary photoreaction is unimolecular, and demonstrate that the first photochemically added O2 molecule must be preassembled in the excited state prior to any photoinduced transformation. This [Formula: see text] ground state complex is responsible for the photoinduced production of the bisdioxygen compound and can be observed by UV–visible spectroscopy. The low efficiency of the photoreaction (quantum yield (Φ) = 0.033 ± 0.004) is explained by the very short excited state lifetime at 298 K, and the competition of O2 with solvent molecules to occupy the unsaturated site of the empty cavity in Pd3(dppm)3CO2+ (i.e., ground state guest–host chemistry). The binding constant for O2 with Pd3(dppm)3CO2+ is roughly estimated to range between 1 and 730 M−1 in the ground state and is considered to be weak. Keywords: clusters, photochemistry, guest–host, oxidation, dioxygen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.