Abstract

Photoinduced absorption (PIA) spectroscopy, where the excitation is provided by a square-wave modulated (on/off) monochromatic light source, is a versatile tool in the study of dye-sensitized solar cells. Spectra of transient species, such as the oxidized dye, can easily be obtained and their kinetics can be explored using frequency or time-resolved techniques. Experimental PIA conditions can be kept close to typical solar cell operating conditions, allowing extraction of relevant time constants. PIA is also a suitable method to study the quality of pore filling in case of solid hole conductors. Dye molecules that are not in direct contact with the hole conductor will have long lifetimes in their oxidized state and appear clearly in the PIA spectrum. The basic principles of PIA are explained using the example of electron injection and recombination in dye-sensitized TiO 2 in the absence of redox electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call