Abstract

The photodynamic inactivation (PDI) represents the potential alternative to traditional antibiotic therapy, and can be applied to treat various bacterial infections, including those caused by Gram-negative bacterial strains. One of the treatment modalities is based on the capacity of bacterial cells to synthesize the excess amounts of porphyrins after exposure to an externally applied 5-aminolevulinic acid (5-ALA), which makes them photosensitive and leads to reduced survival after irradiation with an appropriately selected light source. This study focuses on the sensitization and the photoinduced inactivation of Salmonella enterica cells in PBS containing 0.5mM 5-ALA, incubated at 37°C for 4h or for 20h and afterwards irradiated with violet LED light (11.1mW/cm2, a peak at 400nm). It has been found that both amounts and composition of endogenous porphyrins not only depended on the incubation duration, but also were affected by externally induced photo- and chemo-oxidation reactions. The application of different sensitization conditions has revealed that the increasing amounts of endogenously produced porphyrins do not ensure the proportional reduction of bacterial cell survival numbers. The comparative investigations also demonstrated that the presence of endogenously produced porphyrins in the medium results in secondary sensitization of bacterial cells and causes a notably stronger photoinactivation effect in comparison to their externally applied standards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call