Abstract
We evaluated the H2O2-scavenging activity of the water-water cycle (WWC) in illuminated intact chloroplasts isolated from tobacco leaves. Illumination under conditions that limited photosynthesis [red light (>640 nm), 250 micromol photons m(-2) s(-1) in the absence of HCO3-] caused chloroplasts to take up O2 and accumulate H2O2. Concomitant with the O2 uptake, both ascorbate peroxidase (APX) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) lost their activities. However, superoxide dismutase (SOD), monodehydroascorbate radical reductase (MDAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities remained unaffected. The extent to which the photosynthetic linear electron flow decreased was small compared with the decline in APX activity. Therefore, the loss of APX activity lowered the electron flux through the WWC, as evidenced by a decrease in relative electron flux through PSII [Phi(PSII)xPFD]. To verify these interpretations, we created a transplastomic tobacco line in which an H2O2-insensitive APX from the red alga, Galdieria partita, was overproduced in the chloroplasts. In intact transplastomic chloroplasts which were illuminated under conditions that limited photosynthesis, neither O2 uptake nor H2O2 accumulation occurred. Furthermore, the electron flux through the WWC and the activity of GAPDH were maintained. The present work is the first report of APX inactivation by endogenous H2O2 in intact chloroplasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.