Abstract

Treatment of an ulcerated diabetic foot was documented photographically. We adapted the ultrasonographic tissue characterization (USTC or CATUS) technique to develop a photographic image tissue characterization (p-IMTC or CATIM) method. Five photographs, taken during medical treatment of an ulcerated diabetic foot following digital amputation, were quantified using imaging software designed to determine brightness intensity in grey scale images. The grey scale median (GSM) changed from 127 to 98; 86; 76; and 83 (out of 255) during follow-up. The area of lesion was estimated by number of pixels and reduced from 17.85 cm² to 12.44; 3.68; 2.11; and 0.15 cm². The percentage of total number of pixels showing granulation tissue increased from 11% to 34%; 56%; 62%; and 75%. p-IMTC quantified treatment progress. GSM quantified generalized changes in tissues, while the area of lesion and granulation tissue were documented quantitatively. Lesions, ulcers, wounds or other tissues can be analyzed using p-IMTC, allowing quantification, characterization and control of the progression of a condition or treatment.

Highlights

  • The diabetic foot, especially the ulcerated diabetic foot, continues to be a challenge for modern medicine[1]

  • This paper describes the process of adapting ultrasonographic tissue characterization (USTC or CATUS) and ultrasound virtual histology (USVH) processes to achieve photographic image tissue characterization (p-IMTC or CATIM)

  • We describe in this paper the application of Photographic image tissue characterization (p-IMTC) to five photographs taken during treatment of an ulcerated diabetic foot post hallux amputation

Read more

Summary

Introduction

The diabetic foot, especially the ulcerated diabetic foot, continues to be a challenge for modern medicine[1]. Photography has been used to document treatment of ulcerated diabetic feet. We investigated the utility of photographic tissue analysis as a supplementary, quantitative option. The primary objective was to determine whether the p-IMTC technique based on the photographic brightness of different tissues would be capable of describing the healing process both qualitative and quantitatively. Future objectives are to a) forecast healing time and likelihood of treatment success and b) identify quantitative criteria for changing treatment. This initial step is a “discovery” process, opening up new technological options

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.