Abstract
Triaxial tests has been routinely used to measure the stress–strain relationship for geomaterials. During triaxial testing, many sources of errors that cannot be completely avoided but are often ignored or approximated using empirical equations. This paper presents a systematic investigation of soil volume change, volume strain nonuniformity, and cross-sectional calculation along the specimen during triaxial testing using a photogrammetry-based method. Consolidated drained triaxial tests were performed in which two parallel measurements were taken: (1) relative volume using the conventional triaxial testing and (2) absolute volume using the photogrammetry-based method. The difference in the observed volume and void ratio measurements between the two methods highlighted the importance of absolute soil volume over the relative volume method. The results revealed the effect of soil volume change in the interpretation of triaxial testing findings. Various preparation steps and procedures during triaxial testing have influenced the initial measured volume and thus caused deviation of the subsequent associated measurements. This method would present a quality control approach for different aspects of triaxial testing to improve the test simulations to accurately measure the soil behavior. The proposed method is important for more refined simulations and identification of setup-induced errors. Additional applications of the current research would allow correct determination of the stress path followed during triaxial testing, the critical-state soil mechanics parameters, and the stress–strain relationship, including deformation and strength parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.