Abstract
This article introduces a mathematical model for photogrammetric processing of linear array stereo images acquired by high-resolution satellite imaging systems such as IKONOS. The experimental result of the generation of simulated IKONOS stereo images based on photogrammetric principles, IKONOS imaging geometry and a set of georeferenced aerial images is presented. An accuracy analysis of ground points derived from the simulated IKONOS stereo images is performed. The impact of the number of GCPs (ground control points), distribution of GCPs, and image measurement errors on the ground point accuracy is investigated. It is concluded that an accuracy of ground coordinates from 2 m to 3 m is attainable with GCPs, and 5 m to 12 m without GCPs. Two data sets of HRSC (high resolution stereo camera) and MOMS (modular opto-electronic multispectral stereo-scanner)-2P are also utilized to test the model and system. The presented data processing method is a key to the generation of mapping products such as digital terrain models (DEM) and digitial shorelines from high-resolution satellite images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.