Abstract
Abstract This study presents rapid-scanning X-band polarimetric radar data combined with photogrammetry of the El Reno tornado of 31 May 2013. The relationship between the hook echo, weak-echo hole (WEH), weak-echo column (WEC), and the rotational couplet with the visual characteristics of the tornado are shown. For the first time, cross-correlation coefficient (ρhv) and differential reflectivity (ZDR) data are included in the photogrammetric analyses. The tornado was accompanied by a large tornadic debris signature (TDS) with a diameter ~2 km wide during the analysis time. The center of the TDS was not collocated with the WEH and the rotational couplet. Instead, the TDS was displaced ~1 km to the north and within the weak-echo notch of the hook echo. A “debris overhang” was identified in vertical cross sections of the ρhv fields. The overhang was located in a weak-echo trench and a notch of high ρhv, consistent with the position of the tornado updraft. The updraft was hypothesized to be carrying small debris particles to heights that produced the overhang signature. A U-shaped band of high ρhv and ZDR was resolved in a vertical cross section and positioned at the periphery of the WEC during one of the analysis times. It was proposed that the band formed as a result of hydrometeors encircling the WEC while being surrounded on all sides by relatively hydrometeor-free air. The characteristics of the scatterers within the WEC were resolved and believed to be composed of a low concentration of very small, randomly oriented, debris particles, even in the presence of strong centrifuging, and a general absence of hydrometeors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.