Abstract

Surface modification with bactericides is a promising approach to imparting membrane materials with biofouling resistance. However, chemical modification of membranes made from inert materials, such as polyvinylidene fluoride (PVDF) and polysulfone, is challenging because of the absence of reactive functional groups on these materials. In this study, we develop a facile procedure using benzophenone as an anchor to graft biocidal graphene oxide (GO) to chemically inactive membrane materials. GO nanosheets are first functionalized with benzophenone through an amide coupling reaction. Then, benzophenone-functionalized GO nanosheets are irreversibly grafted to the inert membrane surfaces via benzophenone-initiated cross-linking under ultraviolet irradiation. The binding of GO to the membrane surface is confirmed by scanning electron microscopy and Raman spectroscopy. When exposed to a model bacterium (Escherichia coli), GO-functionalized PVDF and polysulfone membranes exhibit strong antibacterial activity, re...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call