Abstract

ABSTRACTThe study presents the application of infrared spectroscopy in attenuated reflection geometry with variable angle of incidence (VA‐ATR‐FTIR) in analysis of the in‐depth distribution of several chemical species in photografted layers. Two types of networks based on N‐isopropylacrylamide (NIPA) and one interpenetrated network of NIPA and N,N‐dimethylacrylamide (DMA) were produced by UV‐induced graft polymerization on polypropylene surfaces. The NIPA‐g‐PP samples were obtained in two different UV irradiation conditions: under broad band irradiation and using soft UV light (λ > 300 nm). NIPA‐co‐DMA‐g‐PP has been obtained using λ > 300 nm. VA‐ATR‐FTIR spectroscopy revealed the distribution of NIPA and DMA units across the thickness of the probed layer, according to the network type and photografting conditions. The spectral analysis of NIPA‐g‐PP reveals the influence of irradiation conditions, particularly the UV‐B radiation, on the coupling of monomers. For the NIPA‐co‐DMA‐g‐PP sample, a slight agglomeration of DMA units near the surface has been observed, which is maybe related to the more reactive character of DMA. According to the nonhomogenous distribution of the NIPA and DMA units inside the grafted layer, the surface contribution can be separated from the bulk one. The depth profile of several chemical species has been finally constructed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46048.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.