Abstract

Research and development activities in organic solar cells have been intensified in the last two decades, and the reported energy conversion efficiency in small cell samples is rapidly increased. However, the relation between cell performance and material preparation conditions is not fully understood. In this work charge carrier recombination processes in hybrid poly-3-octylthiophene (P3OT)/cadmium sulfide (CdS) photovoltaic cells were analyzed as a function of structural and optoelectronic properties of chemical bath deposited CdS thin films. The temperature of the bath solution varied between 60 and 80 °C, and the deposition time from 1 to 3 h. Charge carrier recombination times in CdS films were measured with photoconductance decay technique, whereas the same time in P3OT films was estimated by Time-of-Flight method. Charge carrier recombination rates at CdS/P3OT interface were determined by transient photovoltage technique. It is found that CdS films grown at lower solution temperature (60 °C) give a higher charge carrier recombination rate at CdS/P3OT interface and larger short-circuit current density and energy conversion efficiency values in the corresponding solar cells, in comparison with the 80 °C deposited ones. This improvement could come from the reduction of charge carrier trap density inside grains as well as at grain boundaries in lower temperature deposited CdS films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call