Abstract

Circular and linear photogalvanic effects induced by far-infrared radiation have been investigated in both n-type and p-type quantum wells (QWs) of various point symmetry groups. The circular photogalvanic effect arises due to optical spin orientation of free carriers in QWs which results in a directed motion of free carriers in the plane of a QW perpendicular to the direction of light propagation. Due to selection rules the direction of the current is determined by the helicity of the light and can be reversed by switching the helicity from right to left.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.