Abstract
We have investigated the photodissociation of CS2 at 193 nm using the technique of photofragment translational spectroscopy. The utilization of vacuum ultraviolet synchrotron radiation for product photoionization has permitted a determination of the vibrationally resolved translational energy distribution for the CS+S(1D) channel and the translational energy distribution for the CS+S(3P) channel. A simulation of the coincident S(1D) translational energy distribution is consistent with a CS vibrational distribution of 0.02:0.17:0.19:0.46:0.15 in ν=0:1:2:3:4 and an average rotational energy of ∼1–3 kcal/mol. We find that the S(3P)/S(1D) branching ratio is 3.0±0.2, in good agreement with previous reports. Both asymptotic channels exhibit similar velocity dependent anisotropy parameters that decrease with decreasing translational energy release. The results extend earlier reports and provide further insight into the dissociation dynamics at 193 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.