Abstract

Photofragmentation translational spectroscopy was used to identify the primary and secondary reaction pathways in the KrF laser (248 nm) photodissociation of chlorine azide (ClN(3)) under collision-free conditions. Both the molecular channel producing NCl (X (3)Sigma,a (1)Delta) + N(2) and the radical channel producing Cl ((2)P(J)) + N(3) were analyzed in detail. Consistent with previously reported velocity map ion imaging experiments [N. Hansen and A. M. Wodtke, J. Phys. Chem. A 107, 10608 (2003)] a bimodal translational energy distribution is seen when Cl atoms are monitored at mz = 35(Cl(+)). Momentum-matched N(3) counterfragments can be seen at mz = 42(N(3) (+)). The characteristics of the observed radical-channel data reflect the formation of linear azide radical and another high-energy form of N(3) (HEF-N(3)) that exhibits many of the characteristics one would expect from cyclic N(3). HEF-N(3) can be directly detected by electron-impact ionization more than 100 mus after its formation. Products of the unimolecular dissociation of HEF-N(3) are observed in the mz = 14(N(+)) and mz = 28(N(2) (+)) data. Anisotropy parameters were determined for the primary channels to be beta = -0.3 for the NCl forming channel and beta = 1.7 and beta = 0.4 for the linear N(3) and HEF-N(3) forming channels, respectively. There is additional evidence for secondary photodissociation of N(3) and of NCl.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.