Abstract

The large diversity of applications in our daily lives that rely on photodetection technology requires photodetectors with distinct properties. The choice of an adequate photodetecting system depends on its application, where aspects such as spectral selectivity, speed, and sensitivity play a critical role. High-sensitivity photodetection covering a large spectral range from the UV to IR is dominated by photodiodes. To overcome existing limitations in sensitivity and cost of state-of-the-art systems, new device architectures and material systems are needed with low-cost fabrication and high performance. Low-dimensional nanomaterials (0D, 1D, 2D) are promising candidates with many unique electrical and optical properties and additional functionalities such as flexibility and transparency. In this Perspective, the physical mechanism of photo-FETs (field-effect transistors) is described and recent advances in the field of low-dimensional photo-FETs and hybrids thereof are discussed. Several requirements for ...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.