Abstract

The oxidative degradation of non-ionic surfactants by the photo-Fenton process has been examined. The photo-Fenton degradation kinetics of mixtures of non-ionic surfactant and other type surfactants has been also investigated since mixtures of non-ionic and ionic surfactants are commonly used to utilize their synergistic effects in many practices. Effects of operating parameters such as dosages of Fenton reagents (iron and hydrogen peroxide) and UV light intensity on the degradation of commercial non-ionic surfactant Sannonic SS-90 (polyoxyethylene alkyl ether) were studied. Although the dosages of the Fenton reagents increased the degradation rate up to the optimum dosages, further addition of the reagents could not enhance the degradation rate. Excess dosages of Fe and H2O2 caused excess OH radicals which could be a scavenger of OH radicals and as a result could not enhance the degradation of the surfactant. The increase in UV light intensity resulting in the faster photo-Fenton process or the enhancement of OH radical formation rate led to the increase in degradation rate of non-ionic surfactant. Although the existence of the anionic surfactant (sodium dodecylbenzene sulphonate) would inhibit the degradation of the non-ionic surfactant due to the formation of complex with Fe ion, the existence of cationic surfactant (dodecyltrimethyl ammonium chloride) affected insignificantly the photo-Fenton degradation process of the non-ionic surfactant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.