Abstract

In this work, two-dimensional surface quasi-crystal patterns were developed by using a novel azobenzene-containing amorphous material (IAC-4), which was newly synthesized for the application. IAC-4 contains a core of isosorbide moiety and two push-pull type azo chromophores as the inner part. The periphery of IAC-4 is functionalized with four cinnamate groups, which can undergo [2+2] photocycloaddition reaction upon UV light irradiation. The molecular design can allow IAC-4 to readily form surface relief structures upon Ar+ laser irradiation, and the formed structures can be further stabilized through a photo-cross-linking reaction induced by UV light irradiation. On the basis of the material, two-dimensional (2D) quasi-crystal structures with different rotation symmetries were successfully fabricated on the IAC-4 films by using the dual-beam multiple exposure technique. In contrast to the approach using photoresist, the quasi-crystal structures were fabricated through the photoinduced mass migration, and no subsequent wet-etch or dry-etch step was required in the process. The quasi-crystal structures with rotation symmetry as high as 60-fold could be feasibly fabricated through this approach. The surface patterns and fabrication method can be potentially applied in areas such as optics, communications, and security inspection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call