Abstract

Artificially constructed metamaterials or metasurfaces with tailored resonant elements provide a revolutionary platform for controlling light at the subwavelength scale. Switchable or frequency-agile meta-devices are highly desirable in achieving more flexible functionalities and have been explored extensively by incorporating various materials, which respond to external stimuli. Graphene, a two-dimensional material showing extraordinary physical properties, has been found very promising for tunable meta-devices. However, the high intrinsic loss of graphene severely obstructs us from achieving high-quality resonance in various graphene metamaterials and metasurfaces, and the loss compensation can be considered as a straightforward strategy to take further advantages of enhanced light–graphene interactions. Here, we demonstrate that the photoexcited graphene, in which the quasi-Fermi energy of graphene changes corresponding to optical pumping, can boost the originally extremely weak magnetic resonance in a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call