Abstract

A novel method to rapidly deposit bone apatite-like coatings on titanium implants in simulated body fluid (SBF) is proposed in this article. The processing was composed of two steps; for example, micro-arc oxidation (MAO) of titanium to form titania films, and UV-light illumination of the titania-coated titanium in SBF. The morphology, crystalline structure, and bond strength of the MAO films were investigated as a function of the applied voltage (in the range of 250-400 V) by using scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, adhesion-tensile test, and scratch test. Results showed that the MAO films were porous and nanocrystalline with pore sizes varying from 1 to 3 microm and grain sizes varying from 10-20 to 70-80 nm; the predominant phase in titania films changed from anatase to rutile, and the bond strength of the films decreased from 43.4 to 32.9 MPa as the applied voltage increased from 250 to 400 V. After UV-light illumination of the films in SBF for 2 h, bone apatite-like coating was deposited on the MAO film formed at 250 V. The bond strength of the apatite/titania bilayer was about 44.2 MPa. However, no apatite was observed on the MAO film formed at 400 V after UV-light illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.