Abstract

Covalent functionalization of single-wall carbon nanotubes (SWCNTs) can be valuable for modifying their electronic properties and creating fluorescent quantum defects. We report here a previously unreported category of such reactions involving interactions of photoexcited aromatic compounds with SWCNT sidewalls. When aqueous suspensions of SWCNTs are exposed to organic aromatic compounds and then irradiated by UV light, fluorescent defects are formed in the nanotubes at rates that depend on the aromatic ring substituents. In reactions with aniline or iodoaniline, strong spectral sidebands appear within 1 min. Total SWCNT photoluminescence can be enhanced by a factor as large as ∼5. Notably, emission spectra of reacted SWCNTs depend on the presence or absence of dissolved oxygen during the reaction. For (6,5) SWCNTs, treatment when oxygen is present gives an additional emission band red-shifted by 160 meV from the pristine position, whereas treatment without oxygen leads to two additional emission bands red-shifted by 140 and 270 meV. Variance spectroscopy shows the presence of individual "multicolor" nanotubes with three distinct emission bands (pristine plus two shifted). The facile generation of dual fluorescent quantum defects in SWCNTs provides emission closer to standard telecom wavelengths, advancing the prospects for applications as single-photon sources in quantum information processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call