Abstract

Nonadiabatic quantum molecular dynamics is used to investigate the evolution of GeTe photoexcited states. Results reveal a photoexcitation-induced picosecond nonthermal path for the loss of long-range order. A valence electron excitation threshold of 4% is found to trigger local disorder by switching Ge atoms from octahedral to tetrahedral sites and promoting Ge-Ge bonding. The resulting loss of long-range order for a higher valence electron excitation fraction is achieved without fulfilling the Lindemann criterion for melting, therefore utilizing a nonthermal path. The photoexcitation-induced structural disorder is accompanied by charge transfer from Te to Ge, Ge-Te bonding-to-antibonding, and Ge-Ge antibonding-to-bonding change, triggering Ge-Te bond breaking and promoting the formation of Ge-Ge wrong bonds. These results provide an electronic-structure basis to understand the photoexcitation-induced ultrafast changes in the structure and properties of GeTe and other phase-change materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.