Abstract

The effective detoxification and removal of arsenite (As(III)) has been widely concerned because of its strong toxicity and migration ability. In this study, we designed a layered double hydroxide-supported polyacrylate stabilized ferrous sulfide composite (PAA/FeS@LDH) and coupled it with UV excitation to purify As(III)-polluted water. The removal efficiency of As(III) under UV irradiation reached almost 100% in 120 min, and the first-order kinetic constant was 3.12 orders of magnitude higher than under dark. UV irradiation significantly accelerated the oxidation and detoxification of As(III) at the interface of PAA/FeS@LDH and treatment solution. It is attributable to the generation of reactive oxygen species (ROS) intermediates, including .O2–, .OH, and SO4.– under UV irradiation, because of the presence of the photogenerated electron-hole pairs and iron valence states cycles. Importantly, .O2– may be rapidly captured and oxidized to 1O2 on the surface of PAA/FeS@LDH that is also an important contributor to the oxidation removal of As(III). Noticeably, As(III) concentrations in the real water were rapidly reduced to below the guideline limitation of drinking water (10 μg/L) within 20 min under UV irradiation. Our outcomes provide a novel photoexcitation treatment system for the efficient detoxification and removal of As from actual wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call