Abstract
Photoenzymatic reversible addition-fragmenatation chain transfer (RAFT) emulsion polymerization, surfactant-free or ab initio, of various monomers is reported with oxygen tolerance. In surfactant-free emulsion polymerizatoin, poly(N, N-dimethylacrylamide)s were used as stabilizer blocks for emulsion polymerization of methyl acrylate, n-butyl acrylate and styrene, producing well-defined amphiphilic block copolymers, including those with an ultrahigh molecular weight, at quantitative conversions. The controlled character of surfactant-free emulsion polymerization was confirmed by kinetic studies, chain extension studies and GPC analyses. Temporal control was demonstrated by light ON/OFF experiments. In ab initio emulsion polymerization of methyl acrylate and methyl methacrylate, low-dispersity hydrophobic polymers were synthesized with predictable molecular weights. This study extends the monomer scope suitable for photoenzymatic RAFT polymerization from hydrophilic to hydrophobic monomers and demonstrates that oxygen-tolerance can be equally achieved for emulsion polymerization with excellent RAFT control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.