Abstract

AbstractFlavin‐dependent ene‐reductases (EREDs) are known to stereoselectively reduce activated alkenes, but are inactive toward carbonyls. Demonstrated here is that in the presence of photoredox catalysts, these enzymes will reduce aromatic ketones. Mechanistic experiments suggest this reaction proceeds through ketyl radical formation, a reaction pathway that is distinct from the native hydride‐transfer mechanism. Furthermore, this reactivity is accessible without modification of either the enzyme or cofactors, allowing both native and non‐natural mechanisms to occur simultaneously. Based on control experiments, we hypothesize that binding to the enzyme active site attenuates the reduction potential of the substrate, enabling single‐electron reduction. This reactivity highlights opportunities to access new catalytic manifolds by merging photoredox catalysis with biocatalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.