Abstract
Transparent conductive oxides are appealing materials for optoelectronic and plasmonic applications as, amongst other advantages, their properties can be modulated by engineering their defects. Optimisation of this adjustment is, however, a complex design problem. This work examined the modification of the carrier transport properties of sputtered tin-doped indium oxide (ITO) via laser annealing in reactive environments. We relate the optical modifications to the structural, compositional, and electronic properties to elucidate the precise mechanisms behind the reactive laser annealing (ReLA) process. For sufficiently high laser fluence, we reveal an ambient-dependent and purely compositional modulation of the carrier concentration of ITO thin films. Hereby, we demonstrate that ReLA utilises the precise energy delivery of photonic processing to enhance the carrier mobility and finely tune the carrier concentration without significantly affecting the crystal structure. Exploitation of this phenomena may enable one to selectively engineer the optoelectronic properties of ITO, promising an alternative to the exploration of new materials for optoelectronic and photonic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.