Abstract
The interaction of the Cr(111) surface with O 2 was studied by means of X-ray and UV photoemission and also work function measurements. A strong oxygen adsorption was found even at very low exposures, suggesting a high sticking coefficient. Previous treatments of the clean surface such as argon-ion bombardment or annealing result in significant changes of the surface structure reflected on work function and adsorption kinetics. No work function change was observed in the initial stage of adsorption, ruling out a model of chemisorption on top. In this range the sticking coefficient remains also constant, supporting a model of rapid regeneration of the genuine surface sites and incorporation of oxygen into the lattice. But in contrast with non transition metals like Cs or Sr, oxygen absorbed at room temperature in Cr, remains essentially in the topmost layers of the surface. At room temperature this initial stage of oxygen incorporation is followed by chemisorption on the corrosion film obtained when the uppermost layers are saturated with oxygen. The oxide layer has a stoichiometry close to Cr 2O 3 at saturation, but the detailed electronic structure depends on previous thermal treatments. Exposures at room temperature lead to a thin (about 9 Å), probably amorphous corrosion layer with a maximum work function change Δφ = +0.9 eV. Adsorption followed by heating at 500° C results in a much thicker corrosion film with a limiting work function decrease of Δφ = −1.2 eV. The XP and UP spectra differ significantly in both cases and suggest a Fermi level shift of nearly 1 eV connected with oxygen adsorption on the Cr 2O 3 surface. The thickness of the corrosion film may be further increased by heating at 500°C in oxygen. The usual XPS spectra of bulk chromium sesquioxide are then clearly observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.