Abstract

A detailed core-level photoemission study of interfaces between thin alkali films andn-orp-type GaAs (110) formed at different substrate temperatures 85 K and 300 K) is reported. All the interfaces grown at 85 K (with Na, K, Rb, and Cs) were found to be non-reactive, while at 300 K, the interface with Na is reactive and that with Cs remains non-reactive. In case of the non-reactive interfaces, a strong band bending of ≊1.0 eV is observed forp-GaAs at alkali coverages as low as θ≊0.01 monolayers, but practically none forn-GaAs. This striking asymmetry in band bending is interpreted as a consequence of the donor character of the alkali atoms. On the other hand, an approximately symmetric band bending at low coverages is observed for the reactive interfaces of Na withn- andp-GaAs and assigned to defect states. For high alkali coverages (θ>2 monolayers), the final band bending is characterizeds by the same Fermilevel position forn- andp-GaAs, independent of the reactivity of the interface, and assigned to metal-induced gap states. Furthermore, systematic trends along the alkali series in Fermi-level position ionization energy, plasmon-loss features, and layer-dependent binding-energy shifts of alkali core levels are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.