Abstract
Photoemission studies of the electronic structure of the vicinal SiC(100) 4° surface, which was grown using a new substrate atom substitution method, and the Cs/SiC(100) 4° interface have been performed for the first time. The modification of spectra of the valence band and C 1s and Si 2p core levels in the process of formation of the Cs/SiC(100) 4° interface was analyzed. The suppression of the surface SiC state with a binding energy of 2.8 eV and the formation of a cesium-induced state with a binding energy of 10.5 eV were observed. The modification of the complex component structure in the spectrum of C 1s core level has been detected and examined for the first time. It was found that Cs adsorption on the vicinal SiC(100) 4° surface results in intercalation of graphene islands on SiC(100) 4° with Cs atoms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.