Abstract

Dirac-like surface states on surfaces of topological insulators have a chiral spin structure that suppresses backscattering and protects the coherence of these states in the presence of nonmagnetic scatterers. In contrast, magnetic scatterers should open the backscattering channel via the spin-flip processes and degrade the state's coherence. We present angle-resolved photoemission spectroscopy studies of the electronic structure and the scattering rates upon the adsorption of various magnetic and nonmagnetic impurities on the surface of Bi2Se3, a model topological insulator. We reveal a remarkable insensitivity of the topological surface state to both nonmagnetic and magnetic impurities in the low impurity concentration regime. Scattering channels open up with the emergence of hexagonal warping in the high-doping regime, irrespective of the impurity's magnetic moment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call