Abstract
AbstractThis chapter addresses the applications of photoelectron spectroscopy in atomic and molecular physics, solid state physics, surface science, and materials science. First, the theoretical underpinnings are outlined. Subsequently, the advances in light sources and detectors, such as synchrotron radiation from undulators, UV lasers, efficient multidetection of energy and momentum, and high‐resolution zero kinetic energy electron detection, are discussed. The remainder is dedicated to a variety of case studies that illustrate the wide range of techniques and applications. The generic methods are photoelectron spectroscopy of core‐levels (X‐ray photoelectron spectroscopy (XPS) or electron spectroscopy for chemical analysis (ESCA)), photoelectron spectroscopy of valence electrons (ultraviolet photoelectron spectroscopy (UPS) and angle‐resolved photoelectron spectroscopy (ARPES)), and X‐ray absorption spectroscopy with electron detection for probing unoccupied molecular orbitals and magnetism (X‐ray absorption spectroscopy (XAS), near edge X‐ray absorption fine structure (NEXAFS), and magnetic circular dichroism (MCD)). Among the special applications are spectro‐microscopy with chemical sensitivity, mapping of the electronic states near the Fermi level that are relevant to magnetism and superconductivity, and finding the electronic states of surfaces and nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.