Abstract

We report photoelectron track length distributions between 3 and 8 keV in gas mixtures of Ne+CO2+CH3NO2 (260:80:10 Torr) and CO2+CH3NO2 (197.5: 15 Torr). The measurements were made using a negative ion time projection chamber (NITPC) at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL). We report the first quantitative analysis of photoelectron track length distributions in a gas. The distribution of track lengths at a given energy is best fit by a lognormal distribution. A powerlaw distribution of the form, f(E)=a(E/Eo)n, is found to fit the relationship between mean track length and energy. We find n=1.29 +/- 0.07 for Ne+CO2+CH3NO2 and n=1.20 +/- 0.09 for CO2+CH3NO2. Understanding the distribution of photoelectron track lengths in proportional counter gases is important for optimizing the pixel size and the dimensions of the active region in electron-drift time projection chambers (TPCs) and NITPC X-ray polarimeters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call