Abstract

In this theoretical study, we show how photoelectron signals generated by time-energy entangled photon pairs can monitor ultrafast excited state dynamics of molecules with high joint spectral and temporal resolutions, not limited by the Fourier uncertainty of classical light. This technique scales linearly, rather than quadratically, with the pump intensity, allowing the study of fragile biological samples with low photon fluxes. Since the spectral resolution is achieved by electron detection and the temporal resolution by a variable phase delay, this technique does not require scanning the pump frequency and the entanglement times, which significantly simplifies the experimental setup, making it feasible with current instrumentation. Application is made to the photodissociation dynamics of pyrrole calculated by exact nonadiabatic wave packet simulations in a reduced two nuclear coordinate space. This study demonstrates the unique advantages of ultrafast quantum light spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.