Abstract

Over the past three decades, the dipole approximation has facilitated a basic understanding of the photoionization process in atoms and molecules. Advances in gas-phase photoemission experiments using synchrotron radiation have recently highlighted nondipole effects at relatively low photon energies while probing the limits of the dipole approximation. Breakdowns in this approximation are manifested primarily as deviations from dipolar angular distributions of photoelectrons. Detailed new results demonstrate nondipolar angular-distribution effects are easily observable in atomic gases at energies well below 1 keV, and, in molecules, a previously unexpected phenomenon greatly enhances the breakdown of the dipole approximation just above the core-level ionization threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.