Abstract
Gas-phase photoelectron spectroscopy and density functional theory have been used to investigate the electronic structures of open-shell bent vanadocene compounds with chelating dithiolate ligands, which are minimum molecular models of the active sites of pyranopterin Mo/W enzymes. The compounds Cp2V(dithiolate) [where dithiolate is 1,2-ethenedithiolate (S2C2H2) or 1,2-benzenedithiolate (bdt), and Cp is cyclopentadienyl] provide access to a 17-electron, d1 electron configuration at the metal center. Comparison with previously studied Cp2M(dithiolate) complexes, where M is Ti and Mo (respectively d0 and d2 electron configurations), allows evaluation of d0, d1, and d2 electronic configurations of the metal center that are analogues for the metal oxidation states present throughout the catalytic cycle of these enzymes. A "dithiolate-folding effect" that involves an interaction between the vanadium d orbitals and sulfur p orbitals is shown to stabilize the d1 metal center, allowing the d1 electron configuration and geometry to act as a low-energy electron pathway intermediate between the d0 and d2 electron configurations of the enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.