Abstract
The gas-phase, iron and cobalt cyclooctatetraene cluster anions, [Fe(1,2)(COT)](-) and [Co(COT)](-), were generated using a laser vaporization source and studied using mass spectrometry and anion photoelectron spectroscopy. Density functional theory was employed to compute the structures and spin multiplicities of these cluster anions as well as those of their corresponding neutrals. Both experimental and theoretically predicted electron affinities and photodetachment transition energies are in good agreement, authenticating the structures and spin multiplicities predicted by theory. The implied spin magnetic moments of these systems suggest that [Fe(COT)], [Fe(2)(COT)], and [Co(COT)] retain the magnetic moments of the Fe atom, the Fe(2) dimer, and the Co atom, respectively. Thus, the interaction of these transition metal, atomic and dimeric moieties with a COT molecule does not quench their magnetic moments, leading to the possibility that these combinations may be useful in forming novel magnetic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.