Abstract
X‐ray photoelectron spectroscopy in the core and valence band region was used to study the formation of hydroxyapatite films on the surface of titanium. The approach used achieves the adhesion of hydroxyapatite by the initial formation of a thin, mainly oxide‐free, etidronate film on the metal. In this approach, it was not possible to prepare hydroxyapatite films of any reasonable thickness on the titanium surface without prior treatment with etidronic acid. Because hydroxyapatite is a principal component of teeth and bones, it is likely that the coated metals will have desirable biocompatible properties. The hydroxyapatite film showed no changes when the film was exposed to air, water, and 1 m sodium chloride solution as representative components of the environment of the film in the human body. These films formed on titanium may find application in medical implants. The thin hydroxyapatite and etidronate film on the metal show differential charging effects that caused a doubling of some of the spectral features. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.