Abstract

Photoelectron angular distributions following the non-resonant two-photon K-shell ionization of neutral atoms are studied theoretically. Using the independent particle approximation and relativistic second-order perturbation theory, the contributions of screening and relativistic effects to the photoelectron angular distribution are evaluated. A simple nonrelativistic expression is presented for the angle-differential cross section in dipole approximation for two-photon ionization by elliptically polarized photons, and its limitations are analyzed numerically. Moreover, we show that screening effects of the inactive electrons can significantly affect the photoelectron distributions and can also lead to a strong elliptical dichroism. Numerical results are resented for the case of two-photon K-shell ionization of neutral Ne, Ge, Xe, and U atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.