Abstract

We theoretically investigate the low energy part of the photoelectron spectra in the tunneling ionization regime by numerically solving the time-dependent Schrdinger equation for different atomic potentials at various wavelengths. We find that the shift of the first above-threshold ionization (ATI) peak is closely related to the interferences between electron wave packets, which are controlled by the laser field and largely independent of the potential. By gradually changing the short-range potential to the long-range Coulomb potential, we show that the long-range potential’s effect is mainly to focus the electrons along the laser’s polarization and to generate the spider structure by enhancing the rescattering process with the parent ion. In addition, we find that the intermediate transitions and the Rydberg states have important influences on the number and the shape of the lobes near the threshold.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.