Abstract

Dynamic materials undergoing adaptive solid-state transitions are attractive for soft mechanics and information technology. Here, we report a novel porous framework system based on macrocyclic trimers assembled from open-shell tetraarylethylene building blocks with aryldicyanomethyl radicals as coupling linkers. Under mechanical, thermal, or chemical stimuli, the framework showed adaptability by activating conformational dynamics and radical-based transformations, thus displaying macroscopic responsiveness in terms of light absorption, luminescence, and magnetism. We studied the dynamic processes by variable-temperature nuclear magnetic resonance (VT-NMR), variable-temperature electron spin resonance (VT-ESR), and superconducting quantum interference device (SQUID) measurement and further established a proof-of-concept application for multi-modal information encryption. The strategy may open avenues for rational design of solid-state photoelectromagnetic dynamic materials by merging dynamic covalent coupling chemistry and functional aggregation principles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call