Abstract

Graphitic carbon nitride with photo-attached platinum nanoparticles of typically 2.5 nm diameter, Pt@g-C3N4, is known for photo-generation of hydrogen in aqueous environments and in the presence of hole quenchers. Here, the generation of photocurrents from photo‑hydrogen production is observed at a platinum electrode, driven by oxalate or glucose hole quenchers, and enhanced with a polymer of intrinsic microporosity PIM-1 coated over the Pt@g-C3N4 deposit. The ability of PIM-1 to create triphasic conditions and to capture hydrogen leads to enhanced photocurrent responses, even in the presence of ambient oxygen. Effects are discussed in terms of triphasic solid|liquid|hydrogen gas-based electrode processes. A glucose-concentration-dependent (super-Langmuirian) photo-response is observed. Possible applications are proposed in glucose sensing and in hydrogen-mediated photovoltaics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.