Abstract

We report on the photoelectrochemical (PEC) performance related to water oxidation of porous hematite (α-Fe2O3) thin films, which were prepared by spin coating of colloidal core/shell Fe/Fe-oxide nanoparticles (NPs) on fluorine-doped SnO2 (FTO) substrates. Oxidation of the obtained Fe/Fe-oxide films at 600°C, 700°C, and 800°C in air yielded porous α-Fe2O3 thin films. The advantage of using Fe/Fe-oxide NPs is that they form stable suspensions in organic solvents and are suitable for spin coating. The highest photocurrent density of 0.75mA/cm2 at 1.23V (vs. a reversible hydrogen electrode, RHE) was achieved with an α-Fe2O3 thin film calcined at 800°C. Incident photon-to-current conversion efficiency (IPCE) data showed that the quantum efficiency of the thin films was about 15% at 350nm at an applied bias of 1.4V vs. RHE. To improve the oxygen evolution reaction, we electrodeposited a Ni(OH)2/NiOOH catalyst (given as NiOOH) onto the α-Fe2O3 film and achieved the reduction of onset potential from 0.85 to 0.69V vs. RHE. Electrochemical impedance spectroscopy and open-circuit photovoltage (OCP) measurements were used to estimate the flat-band potential of the thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.