Abstract

Hydrogen peroxide (H2O2) production on the anode is more valuable than oxygen and chlorine evolution for photoelectrochemical saline water splitting. In this work, by the introduction of bicarbonate (HCO3-), H2O2 is produced from saline water (2 M KHCO3 + 0.5 M NaCl aqueous solution) via the two-electron water oxidation reaction by a photoanode of bismuth vanadate (BiVO4). Furthermore, the Faradaic efficiency (FE) and accumulation for H2O2 are improved by coating antimony tetroxide (Sb2O4) on BiVO4. A H2O2 FE of 26% at 1.54 V vs RHE is obtained by Sb2O4/BiVO4 and 49 ppm of H2O2 is accumulated after a 135 min chronoamperometry. Similar to that in KHCO3 pure water solution, infrared spectroscopy and electrochemical analysis confirm that HCO3- plays a surface-mediating role in the formation of H2O2 in KHCO3 saline water solution. The presence of HCO3- in the electrolyte is able to not only increase the photocurrent density but also effectively inhibit the chlorine evolution reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.