Abstract

Colloidal ZnO, Fe2O3 and Cu2O solutions were used to explore photonic activities at metal oxides/organic semiconductors interfaces. Fluorescence spectroscopic and dynamic electrochemical techniques were performed on colloidal metal oxides articles modified with 3‐dodecyl 2–5 di‐thionyl pyrrole (3‐DODTh‐Py) to investigate the quantum absorbance efficiency at this inorganic/organic interface (IOI). The IOI assemblies were p‐n junction‐type interfaces, where 3‐DODTh‐Py) functions as electron donor. Results were interpreted using the optical and electrochemical parameters of the organic monomer such as IP (ionization potential), EA (electron affinity), and Eg (Energy band gap), and the barrier height at the IOI interface. One of the driving forces for great absorption at IOI was the great difference in electronegativity between inorganic and organic interface. Copyright © 2011 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call