Abstract
Ti–Fe alloys with Fe contents of 0.05, 0.5 and 1.0 wt% were obtained using the arc-melting method. Fe-doped TiO2 nanotube arrays were prepared by anodizing Ti–Fe alloys in ethylene glycol solution containing 0.25 wt% NH4F and 10 wt% H2O. The microstructure, crystal structure and photoelectrochemical properties of the nanotube arrays were characterized using scanning electron microscopy, X-ray diffraction, UV–Vis diffuse reflectance spectroscopy and electrochemical analyzer. Results show that doping of 0.05 wt% Fe improves the photoelectrochemical properties of titania nanotube arrays significantly, whilst further increasing the Fe contents to 0.5 and 1.0 wt% degrades these properties. The external potential has a considerable influence on the photocurrent density at doping content of 0.5 wt% Fe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.