Abstract

Photoelectrochemical (PEC) water splitting is an eco-friendly method for producing clean and sustainable hydrogen fuels. Compared with the fabrication of solar hydrogen using n-type metal oxide semiconductor photoanodes, that of solar hydrogen using p-type metal oxide semiconductor photocathodes has not been researched as thoroughly. Therefore, this study investigated the effect of drop casting time on the PEC performance of a prepared CuBi2O4 photocathode. XPS, HRTEM, UV-DRS, Raman spectroscopy, XRD, and SEM analyses were used to characterize the prepared CuBi2O4 photocathode. Owing to the high charge separation and transfer, the photocurrent density of the CuBi2O4 photocathode was ~0.6 mA cm−2 at 0.3 V vs. RHE. The nanoporous CuBi2O4 photocathode exhibited a high photocurrent density of up to 1.2 mA cm−2 at 0.3 V vs. RHE with H2O2 as a sacrificial agent. Mott–Schottky and impedance measurements were also performed on the CuBi2O4 photocathode to estimate its acceptor density and charge-transfer resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.