Abstract

In this work, a photoelectrochemical (PEC) method was introduced into a microfluidic paper-based analytical device (μ-PAD), and thus, a truly low-cost, simple, portable, and disposable microfluidic PEC origami device (μ-PECOD) with an internal chemiluminescence light source and external digital multimeter (DMM) was demonstrated. The PEC responses of this μ-PECOD were investigated, and the enhancements of photocurrents in μ-PECOD were observed under both external and internal light sources compared with that on a traditional flat electrode counterpart. As a further amplification of the generated photocurrents, an all-solid-state paper supercapacitor was constructed and integrated into the μ-PECOD to collect and store the generated photocurrents. The stored electrical energy could be released instantaneously through the DMM to obtain an amplified (∼13-fold) and DMM-detectable current as well as a higher sensitivity than the direct photocurrent measurement, allowing the expensive and sophisticated electrochemical workstation or lock-in amplifier to be abandoned. As a model, sandwich adenosine triphosphate (ATP)-binding aptamers were taken as molecular reorganization elements on this μ-PECOD for the sensitive determination of ATP in human serum samples in the linear range from 1.0 pM to 1.0 nM with a detection limit of 0.2 pM. The specificity, reproducibility, and stability of this μ-PECOD were also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.